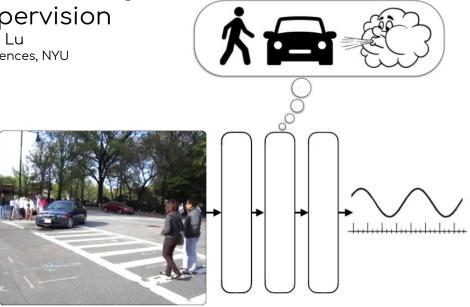
Improving Visual Recognition using Ambient Sound for Supervision

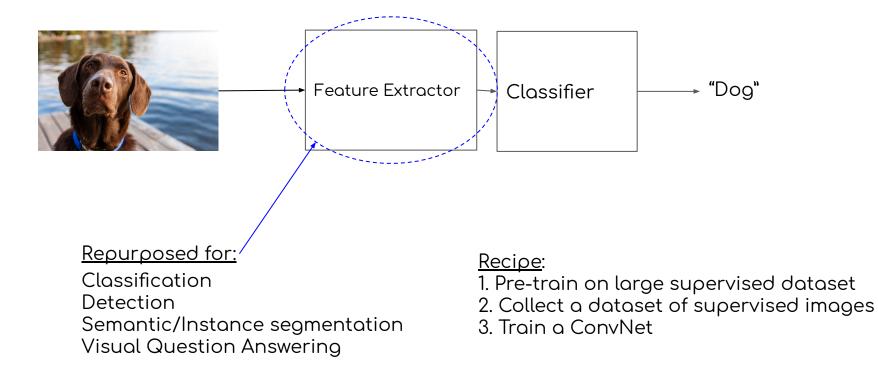
Rohan Mahadev, Hongyu Lu Courant Institute of Mathematical Sciences, NYU

Sound conveys important information about objects in our surrounding. This fact can be exploited by using sound as a supervisory signal to train a model which improves image recognition performance.

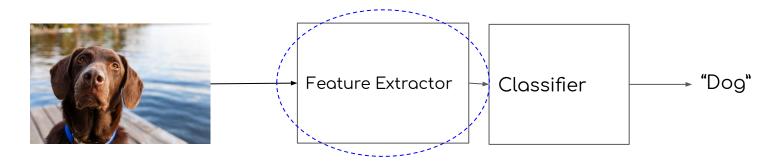


Credit: A. Owens

Motivation

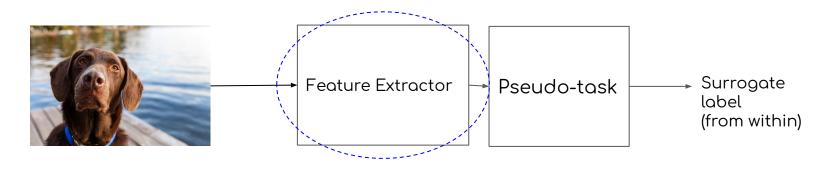


Motivation



All predicated on human annotation Costly Time consuming Prone to error Bias? What about complex concepts? Medicine/Legal?

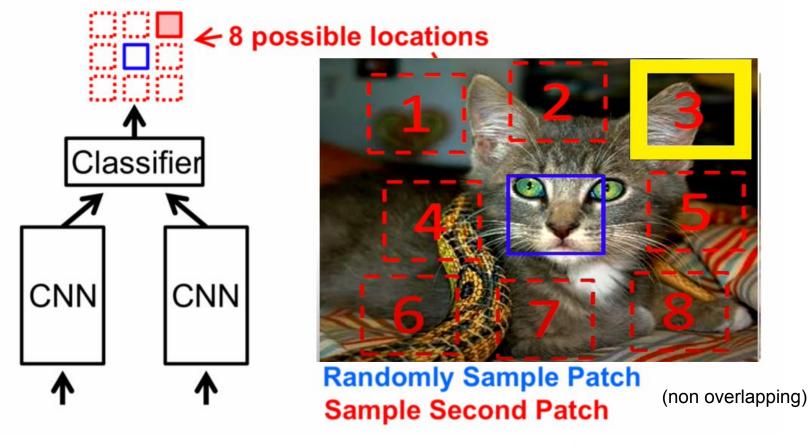
Motivation

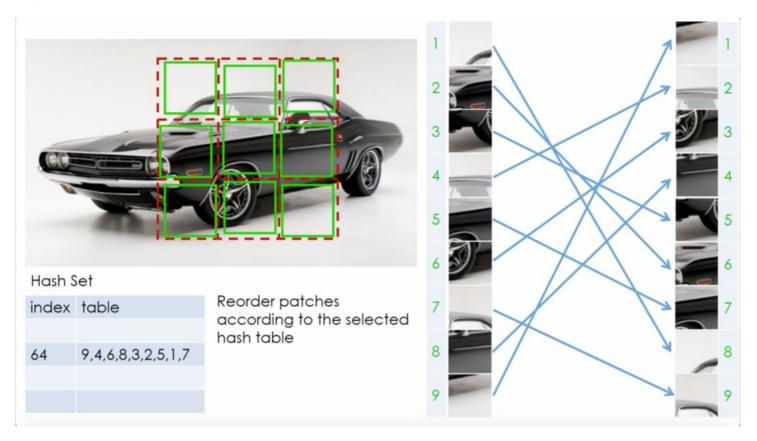


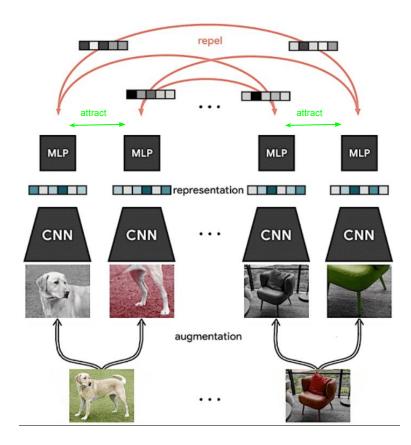
Instead of density modeling (unsupervised learning) where we want ρ_{model} similar to ρ_{data}

We find supervision signal **y** within the input data, which allows use of standard supervised learning losses and architectures

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y(x_i))$$







$$\ell_{i,j}^{\text{NT-Xent}} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)} ,$$

Colorization Image inpainting Split-brain (cross channel prediction) Counting visual primitives Video shuffling Deep Clustering

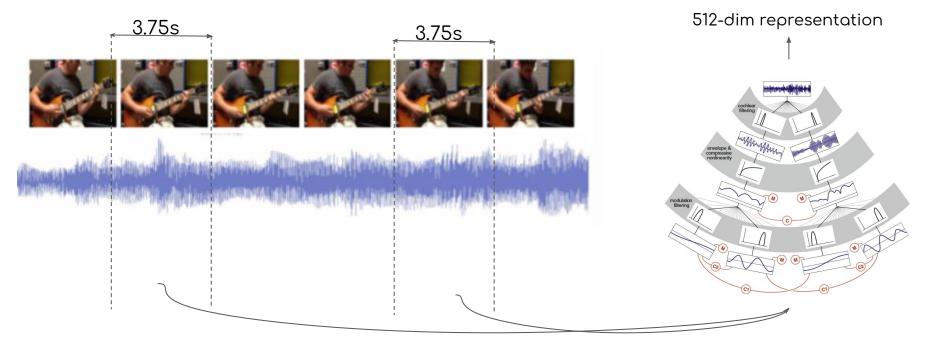
...., Image GPT, SimCLR (v2) MoCo

All use images/video frames. What about audio?

The thud of a bouncing ball, the onset of speech as lips open — when visual and audio events occur together, it suggests that there might be a common, underlying event that produced both signals.

We want (x,y) pairs of (image, sound representation)

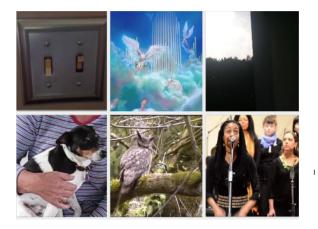
Relationship b/w sound and images



Sound texture model

Relationship b/w sound and images

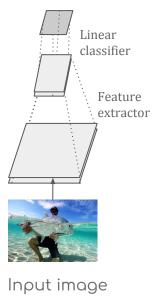
Cluster sound using K-means and use cluster as label for image



We see that frames fall into categories such as "outdoor scenes", "indoor scenes", "people laughing", and "music".

And we get pairs of {(img_1, cluster=1)...(img_n, cluster=k)}

Sound cluster prediction



Dataset

Need for ambient sound

AudioSet consists of an expanding ontology of 632 audio event classes and a collection of 2,084,320 human-labeled 10-second sound clips drawn from YouTube videos.

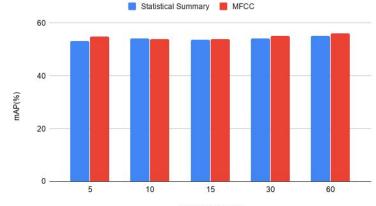
Do not use the annotations in any way. Only needed the dataset as it was a good collection of videos with only ambient sounds

{III } AudioSet

Head All Imagenet(pretrained) [15] 78.9 79.9 Random [14] 33.2 29 Pathak et al. [25] 56.5 34.6 Donahue et al. [6] 52.3 60.1 Owens et al. [22] 52.3 61.3 Pathak et al. [24] 61 -Wang et al. [29] 55.6 63.1 Doersch et al. [5] 65.3 55.1 Bojanowski et al. [2] 56.7 65.3 Zhang et al. [34] 61.5 65.9 67.1 Zhang et al. [35] 63 Noroozi and Favaro [20] 67.6 -Noroozi et al. [21] 67.7 -55.1 Our model 52.8

Pascal VOC classification

	aer	bk	brd	bt	btl	bus	car	cat	chr	cow	din	dog	hrs	mbk	prs	pot	shp	sfa	trn	tv
Imagenet(pretrained)[15]	79	71	73	75	25	60	80	75	51	45	60	70	80	72	91	42	62	56	82	62
Owens et al. [22]	68	47	38	54	15	45	66	45	42	23	37	28	71	58	85	25	26	32	67	42
Colorization [34]	70	50	45	58	15	45	71	50	39	20	38	41	72	57	81	17	42	41	66	38
Tracking [29]	67	35	41	54	11	35	62	35	39	21	30	26	70	53	78	22	32	37	61	34
Object motion [24]	65	39	39	50	13	33	61	36	39	24	35	28	69	49	82	14	19	34	56	31
Patch position [5]	70	44	43	60	12	44	66	52	44	24	45	31	73	48	78	14	28	39	62	43
Egomotion [1]	60	24	21	35	10	19	57	24	27	11	22	18	61	40	69	13	12	24	48	28
Texton-CNN [17]	65	35	28	46	11	31	63	30	41	17	28	23	64	51	74	9	19	33	54	30
k-means [14]	61	31	27	69	9	27	58	34	36	12	25	21	64	38	70	18	14	25	51	25
Ours - Sound Texture	76	.58	45	57	20	60	76	48	44	35	46	42	75	69	90	33	34	43	76	43
Ours - MFCC	74	60	48	57	20	54	76	49	45	37	51	43	74	69	87	31	40	42	75	45



Number of clusters

Update - July 2020

Method	Architecture	Accuracy		
Colorization	R101	39.6		
Jigsaw	R50w2x	44.6		
Exemplar	R50w3x	46		
DeepCluster	VGG	48.4		
Relative Position	R50w2x	51.4		
Rotation	Rv50w4x	55.4		
BigBiGAN	Rv50w4x	61.3		
SimCLRv1	R50w4x	64.5		
MoCo	R50w4x	68.6		
SimCLRv2	R50w4x	69.28		
ImageGPT	iGPT-XL	72		
SimCLRv2	R152w3x	76.6		
This method	R50	49.71		
Pretrained SOTA	RX-101 32x48d	88.5		

Imagenet top 1 accuracy - using linear probe

Improvements

Bigger models

Better sound representation, WaveNet/Contrastive Predictive Coding (CPC)

Audio augmentation to produce a contrastive learning environment? Image augmentation paired with audio clusters?...(several ideas to steer it towards SimCLR)

Built on top of a long list of (audio related) works

- Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Multisensory Features
- Andrew Owens, Jiajun Wu, Josh McDermott, William T. Freeman, Antonio Torralba. Ambient Sound Provides Supervision for Visual Learning
- Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, In So Kweon. *Learning to Localize Sound Source in Visual Scenes*
- Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T. Freeman, Michael Rubinstein. Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation
- Aviv Gabbay, Asaph, Shamir, Shmuel Peleg. Visual Speech Enhancement using Noise-Invariant Training
- Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, Antonio Torralba. *The Sound of Pixels*
- Relja Arandjelovic, Andrew Zisserman. Objects that Sound
- Ruohan Gao, Rogerio Feris, Kristen Grauman. Learning to Separate Object Sounds by Watching Unlabeled Video
- Triantafyllos Afouras, Joon Son Chung, Andrew Zisserman. The Conversation: Deep Audio-Visual Speech Enhancement